One Stage Gear Ratio 4:1 5:1 10:1 Nema 23 34 42 Stepper Motor Gear Speed Reducer Planetary Gearbox,Geared Stepper Motor


One Stage Gear Ratio 4:1 5:1 10:1 Nema 23 34 42 Stepper Motor Geared Speed Reducer Planetary Gearbox

Higher output torque rating by using spiral bevel gear design. 30% more than straight bevel gear.
Allows input speeds up to 8 times than with straight bevel gearing.
Ground gears verified with sophisticated software ensure smooth, quiet operation with reduced backlash (≤2 arcmins).
High tensile low weight single piece aluminum alloy housing for highest stiffness.
Maintenance-free lifetime lubrication.
Patented sealing design for high speed and continuous running.
High efficiency up to 95%. Low noise level down to 61dB.
Most ratios are available from 3~200.
With option premium backlash (≤2 arcmins)

Stepper Motor Description

NEMA 23 is a high torque hybrid bipolar stepper motor with a 2.3×2.3 inch faceplate. This motor has a step angle of 1.8 deg., which means that it has 200 steps per revolution and for every step, it will cover 1.8°. The motor has four color-coded wires (Black, Green, Red & Blue) terminated with bare leads. Black and Green wire is connected with one coil; Red and Blue are connected with the other. This motor can be controlled by two H-bridges but it is recommended to use a stepper motor driver.

High torque stepper motor with NEMA 23 (56 mm) integrated connector. Sca5618 has three lengths and two different windings.
●Keep the torque up to 2.3 nm
●1.8 ° step angle
●Integrated connector



How to use Stepper Motor

As mentioned on the left, this stepper motor consumes high current, so don’t use the H-bridge to control it directly, but use a suitably powerful stepper motor driver. To understand how to make this motor spin, we should look at the coil diagram on the left.

As you can see from the picture on the left, the motor has four wires of different colors. This motor can only be rotated when the coils are energized in a logical sequence. This logic sequence can be programmed using a microcontroller or by designing digital circuits.

Why use a gearbox with a stepper motor?

Stepper motors are known for their accurate positioning capabilities and high torque delivery at low speeds, but they require careful sizing to ensure the motor matches the load and application parameters, to minimize the possibility of lost steps or motor stalling. Adding a gearbox to a stepper motor system can improve the motor’s performance by decreasing the load-to-motor inertia ratio, increasing torque to the load, and reducing motor oscillations.