ep-stepper-motor-gearbox-7

High quality Nema23 stepper motor 425oz 3Nm 112MM length 23HS11230 for cnc

Stepper-motor-gearbox

Model No
Step Angle(°)
Rated Voltage(V)
Rated Current (A)
Phase Resistance(Ω)
Phase Inductance (mH)
Holding Torque (Kg.cm)
Detent Torque(g.cm Max)
Rotor Inertia (g.cm²)
Motor Length (mm)
57HS41-2004
1.8
2
2
1
1.2
3.2
210
120
41
57HS41-1004
1.8
5.4
1
5.4
9.5
5.5
210
120
41
57HS41-2004
1.8
2
2
1
2.2
5
210
120
41
57HS51-1504
1.8
2.4
1.5
1.6
3.8
8.2
360
275
51
57HS51-2004
1.8
2.4
2
1.2
3
9
360
275
51
57HS51-2006
1.8
2
2
1
1.6
7
360
275
51
57HS56-1504
1.8
5.7
1.5
3.8
12
13.5
400
300
56
57HS56-3004
1.8
2.85
3
0.95
2.8
12
400
300
56
57HS56-2006
1.8
3.6
2
1.8
2.8
9
400
300
56
57HS64-3004
1.8
3.9
3
1.3
2.2
15
500
380
64
57HS76-2004
1.8
8.6
2
4.3
16.2
24
680
480
76
57HS76-3004
1.8
2.7
3
0.9
3.5
20
680
480
76
57HS76-4004
1.8
2.4
4
0.6
2.2
20
680
480
76
57HS82-3004
1.8
4.2
3
1.4
5
22
700
510
82
57HS82-4004
1.8
3
4
0.75
3.5
20
700
510
82
57HS100-3004
1.8
3
3
1
4.5
25
1000
680
100
57HS112-3004
1.8
3.9
3
1.3
6.5
30
1200
800
112
57HS112-3504
1.8
2.45
3.5
0.7
3
28
1200
800
112

Stepper Motor Description

NEMA 23 is a high torque hybrid bipolar stepper motor with a 2.3×2.3 inch faceplate. This motor has a step angle of 1.8 deg., which means that it has 200 steps per revolution and for every step, it will cover 1.8°. The motor has four color-coded wires (Black, Green, Red & Blue) terminated with bare leads. Black and Green wire is connected with one coil; Red and Blue are connected with the other. This motor can be controlled by two H-bridges but it is recommended to use a stepper motor driver.

High torque stepper motor with NEMA 23 (56 mm) integrated connector. Sca5618 has three lengths and two different windings.
●Keep the torque up to 2.3 nm
●1.8 ° step angle
●Integrated connector

ep-stepper-motor-gearbox-10

 

How to use Stepper Motor

As mentioned on the left, this stepper motor consumes high current, so don’t use the H-bridge to control it directly, but use a suitably powerful stepper motor driver. To understand how to make this motor spin, we should look at the coil diagram on the left.

As you can see from the picture on the left, the motor has four wires of different colors. This motor can only be rotated when the coils are energized in a logical sequence. This logic sequence can be programmed using a microcontroller or by designing digital circuits.

Why use a gearbox with a stepper motor?

Stepper motors are known for their accurate positioning capabilities and high torque delivery at low speeds, but they require careful sizing to ensure the motor matches the load and application parameters, to minimize the possibility of lost steps or motor stalling. Adding a gearbox to a stepper motor system can improve the motor’s performance by decreasing the load-to-motor inertia ratio, increasing torque to the load, and reducing motor oscillations.